Efficacy of low-level laser therapy in the management of neck pain: a systematic review and meta-analysis of randomised placebo or active-treatment controlled trials

Roberta T Chow, Mark I Johnson, Rodrigo A B Lopes-Martins, Jan M Bjordal

Summary

Background Neck pain is a common and costly condition for which pharmacological management has limited evidence of efficacy and side-effects. Low-level laser therapy (LLLT) is a relatively uncommon, non-invasive treatment for neck pain, in which non-thermal laser irradiation is applied to sites of pain. We did a systematic review and meta-analysis of randomised controlled trials to assess the efficacy of LLLT in neck pain.

Methods We searched computerised databases comparing efficacy of LLLT using any wavelength with placebo or with active control in acute or chronic neck pain. Effect size for the primary outcome, pain intensity, was defined as a pooled estimate of mean difference in change in mm on 100 mm visual analogue scale.

Findings We identified 16 randomised controlled trials including a total of 820 patients. In acute neck pain, results of two trials showed a relative risk (RR) of 1·69 (95% CI 1·22–2·33) for pain improvement of LLLT versus placebo. Five trials of chronic neck pain reporting categorical data showed an RR for pain improvement of 4·05 (2·74–5·98) of LLLT, Patients in 11 trials reporting changes in visual analogue scale had pain intensity reduced by 19·86 mm (10·04–29·68). Seven trials provided follow-up data for 1–22 weeks after completion of treatment, with short-term pain relief persisting in the medium term with a reduction of 22·07 mm (17·42–26·72). Side-effects from LLLT were mild and not different from those of placebo.

Interpretation We show that LLLT reduces pain immediately after treatment in acute neck pain and up to 22 weeks after completion of treatment in patients with chronic neck pain.

Funding None.

Introduction Chronic pain is predicted to reach epidemic proportions in developed countries with ageing populations in the next 30 years. Chronic neck pain is a highly prevalent condition, affecting 10–24% of the population. Economic costs of this condition are estimated at hundreds of millions of dollars, creating an imperative for evidence-based, cost-effective treatments. Low-level laser therapy (LLLT) uses laser to aid tissue repair, relieve pain, and stimulate physical medicine for mechanical neck disorders, since its mechanism of action and effectiveness. Research from the past decade suggests that LLLT produces anti-inflammatory effects, contributing to pain relief. Cochrane reviews of the efficacy of LLLT in low back pain and rheumatoid arthritis have been unable to make firm conclusions because of insufficient data or conflicting findings. However, effectiveness depends on factors such as wavelength, site, duration, and dose of LLLT treatment. Adequate dose and appropriate procedural technique are rarely considered in systematic reviews of electrophysical agents. Research into the dose-response profile of LLLT suggests that different wavelengths have specific penetration abilities through human skin. Thus, clinical effects could vary with depth of target tissue. We have shown the importance of accounting for dose and technique in systematic reviews of transcutaneous electrical nerve stimulation and LLLT, and our approach is an acknowledged means of establishing efficacy.

The only systematic review focusing solely on LLLT in treatment of neck pain included four randomised controlled trials, and concluded that there was evidence of short-term benefit of LLLT at infrared wavelengths of 780, 810–830, and 904 nm. A Cochrane review of physical medicine for mechanical neck disorders, since...
search strategy and selection criteria

Citations were screened and full reports of potentially relevant studies obtained. We applied inclusion and exclusion criteria, assessed methodological criteria, and extracted data including trial characteristics, demographic data, laser parameters, pain outcome measures, and co-interventions. Non-English language studies were translated by JMB.

We included randomised or quasi-randomised controlled trials of LLLT for acute or chronic neck pain as defined by trial investigators, and identified by various clinical descriptors included under the term non-specific neck pain.19 These diagnostic labels included neck strain, neck sprain, mechanical neck disorders, whiplash, neck disorders, and neck and shoulder pain. We also used surrogate terms for neck pain, such as myofascial pain and trigger points.20,21 Study participants were restricted to those aged 16 years and older. We excluded studies in which specific pathological changes could be identified, such as systemic inflammatory conditions—eg, rheumatoid arthritis, localised or generalised fibromyalgia, neck pain with radiculopathy, and neck pain related to neurological disease. We excluded abstracts and studies for which outcome measures for neck pain could not be separated from data for other regions of the body. Two reviewers (RTC, JMB) independently undertook the search of published work, screened studies, and extracted data. Any disagreements between reviewers were resolved by consensus with other team members acting as arbiters (RABL-M, MIJ).

Investigators had to have used a laser device that delivered irradiation to points in the neck identified by tenderness, local acupuncture points, or on a grid at predetermined points overlying the neck. Control groups had to have been given either placebo laser in which an

Methods

Search strategy and selection criteria

Citations were screened and full reports of potentially relevant studies obtained. We applied inclusion and exclusion criteria, assessed methodological criteria, and extracted data including trial characteristics, demographic data, laser parameters, pain outcome measures, and co-interventions. Non-English language studies were translated by JMB.

We included randomised or quasi-randomised controlled trials of LLLT for acute or chronic neck pain as defined by trial investigators, and identified by various clinical descriptors included under the term non-specific neck pain.19 These diagnostic labels included neck strain, neck sprain, mechanical neck disorders, whiplash, neck disorders, and neck and shoulder pain. We also used surrogate terms for neck pain, such as myofascial pain and trigger points.20,21 Study participants were restricted to those aged 16 years and older. We excluded studies in which specific pathological changes could be identified, such as systemic inflammatory conditions—eg, rheumatoid arthritis, localised or generalised fibromyalgia, neck pain with radiculopathy, and neck pain related to neurological disease. We excluded abstracts and studies for which outcome measures for neck pain could not be separated from data for other regions of the body. Two reviewers (RTC, JMB) independently undertook the search of published work, screened studies, and extracted data. Any disagreements between reviewers were resolved by consensus with other team members acting as arbiters (RABL-M, MIJ).

Investigators had to have used a laser device that delivered irradiation to points in the neck identified by tenderness, local acupuncture points, or on a grid at predetermined points overlying the neck. Control groups had to have been given either placebo laser in which an

Methods

Search strategy and selection criteria

Citations were screened and full reports of potentially relevant studies obtained. We applied inclusion and exclusion criteria, assessed methodological criteria, and extracted data including trial characteristics, demographic data, laser parameters, pain outcome measures, and co-interventions. Non-English language studies were translated by JMB.

We included randomised or quasi-randomised controlled trials of LLLT for acute or chronic neck pain as defined by trial investigators, and identified by various clinical descriptors included under the term non-specific neck pain.19 These diagnostic labels included neck strain, neck sprain, mechanical neck disorders, whiplash, neck disorders, and neck and shoulder pain. We also used surrogate terms for neck pain, such as myofascial pain and trigger points.20,21 Study participants were restricted to those aged 16 years and older. We excluded studies in which specific pathological changes could be identified, such as systemic inflammatory conditions—eg, rheumatoid arthritis, localised or generalised fibromyalgia, neck pain with radiculopathy, and neck pain related to neurological disease. We excluded abstracts and studies for which outcome measures for neck pain could not be separated from data for other regions of the body. Two reviewers (RTC, JMB) independently undertook the search of published work, screened studies, and extracted data. Any disagreements between reviewers were resolved by consensus with other team members acting as arbiters (RABL-M, MIJ).

Investigators had to have used a laser device that delivered irradiation to points in the neck identified by tenderness, local acupuncture points, or on a grid at predetermined points overlying the neck. Control groups had to have been given either placebo laser in which an
identical laser device had an active operating panel with the laser emission deactivated or an active treatment control (eg, exercise). We also included trials in which an active control was used as a co-intervention in placebo and real laser groups.

To be eligible for inclusion, a study had to compare pain relief along a 0–100 mm visual analogue scale, a numerical rating scale, or by patient-reported improvement (eg, categorical report of no change to complete relief of pain) as a primary outcome measure before and after laser therapy. Functional measures of disability (eg, neck pain disability questionnaire) were assessed as secondary outcome measures. We also examined adverse events where reported, although did not specify these a priori. Duration of follow-up was assessed and defined as short term (<1 month), medium-term (1–6 months), and long term (>6 months).

Assessment of methodological quality and heterogeneity

Reviewers assessed all studies for methodological quality on the basis of Jadad criteria (maximum score 5).24 Jadad criteria allocate a point each for randomisation, double-blind design, and description of dropouts. If randomisation and double-blind concealment are assured, an additional 2 points are added. If randomisation or double-blind concealment is not assured, a point is deducted for each. A trial with a score of 3 or more is regarded as high quality. Data from trials with scores of 3 or more were grouped and analysed separately from those scoring less than 3.

We assessed clinical heterogeneity by considering population difference in age, sex, duration of symptoms, and outcomes. Clinical judgment was used to establish whether trials were sufficiently similar to allow pooling

Table 1: Study design and outcome measures

<table>
<thead>
<tr>
<th>n</th>
<th>Design</th>
<th>Diagnosis</th>
<th>Jadad score</th>
<th>Control</th>
<th>Sites treated</th>
<th>Cointerventions</th>
<th>Primary pain outcome measure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ceccherelli et al (1989)</td>
<td>27</td>
<td>DB RCT</td>
<td>Cervical myofascial pain</td>
<td>3</td>
<td>Placebo</td>
<td>Tender points in neck and distal acupuncture points</td>
<td>NR</td>
</tr>
<tr>
<td>Floter et al (1990)</td>
<td>60</td>
<td>DB RCT</td>
<td>Cervical osteoarthritis</td>
<td>3</td>
<td>Placebo</td>
<td>Tender points in neck</td>
<td>NR</td>
</tr>
<tr>
<td>Taverna et al (1990)</td>
<td>40</td>
<td>DB RCT</td>
<td>Chronic myofascial pain</td>
<td>3</td>
<td>Placebo</td>
<td>Tender points in neck</td>
<td>NR</td>
</tr>
<tr>
<td>Toya et al (1994)</td>
<td>39</td>
<td>DB RCT</td>
<td>Cervical pain complex</td>
<td>5</td>
<td>Placebo</td>
<td>Site not specified</td>
<td>No physical or medical therapy allowed</td>
</tr>
<tr>
<td>Soriano et al (1996)</td>
<td>71</td>
<td>DB, RCT</td>
<td>Acute cervical pain</td>
<td>3</td>
<td>Placebo</td>
<td>Site not specified</td>
<td>No NSAIDs or other medical or physical therapy allowed</td>
</tr>
<tr>
<td>Laakso et al (1993)</td>
<td>41</td>
<td>DB, RCT</td>
<td>Neck pain with trigger points in neck</td>
<td>3</td>
<td>Placebo</td>
<td>Three most painful trigger points</td>
<td>Simple analgesic drugs allowed as needed; NSAIDs, corticosteroids, tricyclic antidepressants excluded; no physical therapies</td>
</tr>
<tr>
<td>Özdemir et al (2001)</td>
<td>60</td>
<td>DB, RCT</td>
<td>Neck pain related to neck osteoarthritis</td>
<td>3</td>
<td>Placebo</td>
<td>Six arbitrary points over neck muscles</td>
<td>NR</td>
</tr>
<tr>
<td>Seidel and Uhlemann (2002)</td>
<td>48</td>
<td>DB, RCT</td>
<td>Chronic cervical syndrome</td>
<td>3</td>
<td>Placebo</td>
<td>Local neck points and distal acupuncture points</td>
<td>Acupuncture not allowed less than 6 months before inclusion; drug therapy unchanged during trial</td>
</tr>
<tr>
<td>Hakugider et al (2003)</td>
<td>62</td>
<td>DB, RCT</td>
<td>Neck pain with one trigger point</td>
<td>3</td>
<td>Exercise with LLLT and exercise alone</td>
<td>One active trigger point in levator scapulae or trapezius</td>
<td>NR</td>
</tr>
<tr>
<td>Chow et al (2004)</td>
<td>20</td>
<td>DB, RCT</td>
<td>Neck pain (non-specific)</td>
<td>5</td>
<td>Placebo</td>
<td>Multiple tender points in cervical spine and attachments</td>
<td>Simple analgesic drugs allowed; no physical therapies</td>
</tr>
<tr>
<td>Gur et al (2004)</td>
<td>60</td>
<td>DB, RCT</td>
<td>Cervical myofascial pain in the neck</td>
<td>5</td>
<td>Placebo</td>
<td>Up to ten trigger points</td>
<td>NR</td>
</tr>
<tr>
<td>Ilbuldý et al (2004)</td>
<td>40</td>
<td>DB, RCT</td>
<td>Myofascial pain syndrome</td>
<td>2</td>
<td>Placebo and needling</td>
<td>Trigger points in upper trapezius</td>
<td>Simple analgesic drugs as needed; exercise to all groups</td>
</tr>
<tr>
<td>Aigner et al (2006)</td>
<td>45</td>
<td>SB, RCT</td>
<td>Acute whiplash injury</td>
<td>0</td>
<td>Placebo</td>
<td>Local and distal acupuncture points</td>
<td>Both groups wore cervical collar; paracetamol and chlormezanone</td>
</tr>
<tr>
<td>Chow et al (2006)</td>
<td>90</td>
<td>DB, RCT</td>
<td>Non-specific neck pain</td>
<td>5</td>
<td>Placebo</td>
<td>Local tender points</td>
<td>Simple analgesic drugs allowed; no physical therapies</td>
</tr>
<tr>
<td>Dundar et al (2007)</td>
<td>64</td>
<td>DB, RCT</td>
<td>Cervical myofascial pain syndrome</td>
<td>3</td>
<td>Placebo</td>
<td>Three trigger points bilaterally</td>
<td>No NSAIDs or analgesic drugs</td>
</tr>
</tbody>
</table>

n=number of patients. DB=double-blind. RCT=randomised controlled trial. NR=not reported. VAS=visual analogue scale. NSAIDs=non-steroidal anti-inflammatory drugs. SB=single blind.
of data. The specific parameters of laser devices, application techniques, and treatment protocols were extracted and tabulated by laser wavelength. Details for power output, duration of laser irradiation, number of points irradiated, and frequency and number of treatments were listed. When specific details were not reported, calculations were made from those described in the report when possible. When crucial parameters were not reported, we contacted manufacturers of laser devices and trial investigators to obtain missing information. Not all data were available because of the time elapsed since publication of some studies. Heterogeneity was qualitatively assessed for these factors by an expert in laser therapy (JMB).

We used five levels of evidence to describe whether treatment was beneficial: strong evidence (consistent findings in several high-quality randomised controlled trials); moderate evidence (findings from one high-quality randomised controlled trial or consistent findings in several low-quality trials); limited evidence (one low-quality randomised trial); unclear evidence (inconsistent or contradictory results in several randomised trials); and no evidence (no studies identified).

Statistical analysis

Effect size for the primary outcome, pain intensity, was defined as a pooled estimate of the mean difference in change in mm on a 100 mm visual analogue scale between the mean of the treatment and the placebo groups, weighted by the inverse of the SD for every study—ie, weighted mean difference of change between groups. Variance was calculated from the trial data and given, with 95% CI, in mm on visual analogue scale. For categorical data, reported pain relief was dichotomised into two categories (improvement or no improvement), and we calculated relative risk (RR) of improvement, with 95% CI. For the secondary outcome, disability, effect size was defined as the standardised mean difference, which was a combined outcome measure without units—ie, the standardised mean difference in change between active laser groups and placebo groups for all included trials, weighted by the inverse of the variance for each study.

Mean differences of change for laser-treated and control groups and their respective SDs were included in the statistical pooling. If variance data were not reported as SDs, they were calculated from the trial data of sample size and other variance data values such as \(p \) values, \(t \) values, SE, or 95% CI. Results were presented as weighted mean difference between laser-treated and control with 95% CI in mm on visual analogue scale—ie, as a pooled estimate of the mean difference in change between the laser-treated and control groups, weighted by the inverse of the variance for each study.

Statistical heterogeneity was assessed for significance (\(p<0·05 \) with Revman 4.2, and \(\chi^2 \) and \(P \) values greater than 50%. For categorical data, we calculated combined RRs for improvement, with 95% CI. A fixed effect model was used unless statistical heterogeneity was significant (\(p<0·05 \), after which a random effects model was used. Publication bias was assessed by graphical plot.

Revman 4.2 was used for statistical analysis and Microsoft Excel 2003 (version 11) to plot dose-response curves.

Role of the funding source

There was no funding source for this study. The corresponding author had full access to all the data in the study and had final responsibility for the decision to submit for publication.

Results

We identified 16 randomised controlled trials of a possible 38 that were suitable for inclusion, and that included 820 patients (figure I). Two trials 39,40 provided data for laser therapy of acute neck pain, one treating acute whiplash-associated disorders and one treating acute neck pain of no defined cause. The other 14 trials reported response of chronic non-specific neck pain without radiculopathy to
laser therapy. Of the studies included, 648 (79%) of the sample of patients with chronic neck pain were women, and patients had a mean age of 43 years (SD 9·8), mean symptom duration of 90 months (SD 36·9), and mean baseline pain of 56·9 mm (SD 7·5) on a 100 mm visual analogue scale in any trial. Co-interventions were inconsistently reported (table I). Ten trials reported co-interventions, and six studies did not report or limit co-interventions. Of the studies reporting co-interventions, five groups of investigators explicitly excluded use of concurrent physical therapies, and four excluded use of non-steroidal anti-inflammatory drugs. Four studies allowed use of simple analgesic drugs as needed. Methodological quality assessment values for the trials by Jadad scoring ranged from 0 to 5 (table I).

Analysis of categorical data for immediate before and of acute neck pain had a significant RR of 1·69 (95% CI 1·28 to 2·23). Of the studies reporting co-interventions, inconsistent reporting (table 1). Ten trials reported co-interventions, and six studies did not report or limit co-interventions. Of the studies reporting co-interventions, five groups of investigators explicitly excluded use of concurrent physical therapies, and four excluded use of non-steroidal anti-inflammatory drugs. Four studies allowed use of simple analgesic drugs as needed. Methodological quality assessment values for the trials by Jadad scoring ranged from 0 to 5 (table I).

Analysis of categorical data for immediate before and of acute neck pain had a significant RR of 1·69 (95% CI 1·28 to 2·23). Of the studies reporting co-interventions, inconsistent reporting (table 1). Ten trials reported co-interventions, and six studies did not report or limit co-interventions. Of the studies reporting co-interventions, five groups of investigators explicitly excluded use of concurrent physical therapies, and four excluded use of non-steroidal anti-inflammatory drugs. Four studies allowed use of simple analgesic drugs as needed. Methodological quality assessment values for the trials by Jadad scoring ranged from 0 to 5 (table I).
Follow-up 1–4 weeks after end of treatment

<table>
<thead>
<tr>
<th>Laser mean (SD)</th>
<th>Placebo mean (SD)</th>
<th>WMD (95% CI)</th>
<th>Weight (%)</th>
<th>WMD (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.90 (21.60)</td>
<td>14.50 (24.30)</td>
<td>-4.60 (-22.27 to 13.07)</td>
<td>9.4%</td>
<td>-4.40 (p<0.001)</td>
</tr>
<tr>
<td>20.00 (22.40)</td>
<td>11.70 (17.60)</td>
<td>8.14 (5.50 to 10.74)</td>
<td>7.0%</td>
<td>5.50 (p<0.001)</td>
</tr>
<tr>
<td>47.60 (25.80)</td>
<td>18.40 (19.20)</td>
<td>24.43 (35.90 to 14.55)</td>
<td>8.7%</td>
<td>24.43 (p<0.001)</td>
</tr>
<tr>
<td>48.80 (18.00)</td>
<td>30</td>
<td>20.46 (13.60 to 27.33)</td>
<td>9.5%</td>
<td>20.46 (p<0.001)</td>
</tr>
</tbody>
</table>

Subtotal: 85

Test for heterogeneity: χ²=22·43, df=3 (p=0·002), I²=80.3%

Test for overall effect: Z=9·29 (p<0·0001)

Follow-up 10–22 weeks after end of treatment

<table>
<thead>
<tr>
<th>Laser mean (SD)</th>
<th>Placebo mean (SD)</th>
<th>WMD (95% CI)</th>
<th>Weight (%)</th>
<th>WMD (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>38.20 (20.80)</td>
<td>9.90 (18.20)</td>
<td>27.30 (33.60 to 55.20)</td>
<td>7.2%</td>
<td>27.30 (p<0.001)</td>
</tr>
<tr>
<td>21.70 (14.80)</td>
<td>0.90 (37.60)</td>
<td>20.80 (6.33 to 35.27)</td>
<td>7.0%</td>
<td>20.80 (p<0.001)</td>
</tr>
<tr>
<td>38.50 (26.00)</td>
<td>33.30 (30.60)</td>
<td>5.20 (1.84 to 22.90)</td>
<td>3.2%</td>
<td>5.20 (p<0.001)</td>
</tr>
<tr>
<td>36.80 (19.40)</td>
<td>24.40 (17.80)</td>
<td>12.40 (1.84 to 22.90)</td>
<td>3.2%</td>
<td>12.40 (p<0.001)</td>
</tr>
</tbody>
</table>

Subtotal: 86

Test for heterogeneity: χ²=22·43, df=3 (p<0.0001), I²=86.6%

Test for overall effect: Z=7·26 (p=0·0001)

Total

<table>
<thead>
<tr>
<th>Laser mean (SD)</th>
<th>Placebo mean (SD)</th>
<th>WMD (95% CI)</th>
<th>Weight (%)</th>
<th>WMD (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>38.08 (20.80)</td>
<td>9·90 (18.20)</td>
<td>27.30 (33.60 to 55.20)</td>
<td>7.2%</td>
<td>27.30 (p<0.001)</td>
</tr>
<tr>
<td>21.70 (14.80)</td>
<td>0.90 (37.60)</td>
<td>20.80 (6.33 to 35.27)</td>
<td>7.0%</td>
<td>20.80 (p<0.001)</td>
</tr>
<tr>
<td>38.50 (26.00)</td>
<td>33.30 (30.60)</td>
<td>5.20 (1.84 to 22.90)</td>
<td>3.2%</td>
<td>5.20 (p<0.001)</td>
</tr>
<tr>
<td>36.80 (19.40)</td>
<td>24.40 (17.80)</td>
<td>12.40 (1.84 to 22.90)</td>
<td>3.2%</td>
<td>12.40 (p<0.001)</td>
</tr>
</tbody>
</table>

Subtotal: 171

Test for heterogeneity: χ²=22·43, df=3 (p=0·0001), I²=81.6%

Test for overall effect: Z=7·26 (p=0·0001)

Figure 5: Weighted mean difference in pain reduction on 100 mm visual analogue scale between placebo-treated and laser-treated groups in seven trials reporting follow-up data

WMD = weighted mean difference.

Articles
pain reporting on categorical data \((p=0.37, \chi^2=4.31, I^2=7.2\%) \).

For continuous data from 100 mm visual analogue scale in chronic neck pain, we detected significant heterogeneity across all wavelengths \((p=0.0001, \chi^2=157.76, I^2=90.6\%) \). However, when heterogeneity was addressed separately by wavelengths, most heterogeneity could be accounted for by variations in doses and application procedures. Removal of the study\(^4\) that used a very high dose from the disability analysis eliminated statistical heterogeneity \((p=0.37, \chi^2=7.2\%) \). For pain intensity on 100 mm visual analogue scale for 820–830 nm wavelength, this study caused heterogeneity together with results of a second study\(^5\) that showed a highly significant effect, without obvious reasons for heterogeneity. After removal of both studies from the 820–830 nm analysis, statistical heterogeneity was eliminated \((p=0.12, \chi^2=10.20, I^2=41.2\%) \), but the overall effect remained similar, with narrower confidence intervals after \((22.0\text{ mm} [14.5–29.6]) \) than before \((21.6\text{ mm} [10.3–32.9]) \) removal.

For 904 nm wavelength, statistical heterogeneity was evident for analysis of pain intensity on 100 mm visual analogue scale \((p=0.0001, \chi^2=28.37, I^2=89.4\%) \). The only study in the review using a scanning application procedure in contact with the skin had weaker than average results.\(^a\) Contrary to other laser application procedures, this method irradiates the target area intermittently. Few studies compare scanning irradiation with stationary irradiation, and most LLLT studies have used a stationary laser beam. Another study using 904 nm wavelength\(^b\) with non-significant results has been criticised for absence of laser testing and calibration, and the actual dose used remains uncertain.\(^c\) Removal of these two trials from the 904 nm analysis of pain reduction on 100 mm visual analogue scale increased the overall effect from 20.6 mm \((95\%\text{ CI 5.2–36.2}) \) to 37.8 mm \((25.4–50.1) \).

50% of trials did not report side-effect data. Side-effects reported included tiredness, nausea, headache, and increased pain, but were mild and, apart from one study in which unusual tiredness occurred more in the laser group than in the placebo group \((p>0.01) \),\(^d\) did not differ from those of placebo.

Discussion

Our results show moderate statistical evidence for efficacy of LLLT in treatment of acute and chronic neck pain in the short and medium term. For chronic pain, we recorded an average reduction in visual analogue scale of 19.86 mm across all studies, which is a clinically important change.\(^6\)\(^7\) Categorical data for global improvement also significantly favoured LLLT. From our analysis, 820–830 nm doses are most effective in the range of 0.8–9.0 J per point, with irradiation times of 15–180 s. At 904 nm, doses are slightly smaller \((0.8–4.2 \text{ J per point}) \), with slightly longer irradiation times \((100–600 \text{ s}) \) than at 820–830 nm.

Our findings build on those of previous reviews of LLLT\(^8\)\(^9\) by including non-English language studies, laser acupuncture studies in which local points were treated, and a quantitative analysis. Our search strategy has identified a greater number of studies than have previous reviews, and draws attention to the intrinsic difficulties in searching the topic of LLLT. Specifically, no accepted terminology exists for laser therapy. We have overcome this limitation by using as wide a range of synonyms as possible.

Moreover, many apparently disparate diagnostic terms are applied to patients presenting with neck pain. These terms suggest distinct clinical entities; however, there is strong evidence that a definitive diagnosis of the causes of neck pain is not possible in a clinical
setting. By using the term non-specific neck pain, which encompasses many descriptors, we have addressed the clinical reality that patients presenting with neck pain can have several concurrent sources of pain from joints, muscles, and ligaments.

In addition to aggregating all included studies, irrespective of diagnostic label, we also combined data irrespective of the intended rationale for treatment, as long as neck muscles and spinal joints were exposed to laser irradiation. Transcutaneous application results in laser-energy scattering and spreading into a three-dimensional volume of tissue, up to 5 cm for infrared laser. Since the same effect would be achieved with application of laser energy to acupuncture points, we also included data from studies in which local points in the neck were treated as part of the protocol. Evidence suggests that trigger points in the neck coincide with the location of acupuncture points in 70–90% of patients (eg, BL10, GB 20, GB21, and Ah Shi points). Since trigger points and acupuncture points are characterised by tenderness, the treatment effect of laser irradiation to tender points, trigger points, or acupuncture points is likely to be the same. We did not distinguish any differences in subgroup analyses between these techniques. Thus, when treating neck pain with LLLT, irradiation of known trigger points, acupuncture points, tender points, and symptomatic zygapophyseal joints is advisable.

Dose assessment is crucial for interpretation of outcomes of LLLT studies, for which failure to achieve a dose in the recommended range has been identified as a major factor for negative outcomes. The direct relation between positive outcomes of trials with adequate doses of laser irradiation for the appropriate condition has been shown in acute injury and soft-tissue inflammation, tendinopathies, rheumatoid arthritis, lateral epicondylitis, and osteoarthritis.

Several crucial parameters of laser devices are needed to assess dose of laser irradiation, but these doses were inconsistently reported in the studies that we reviewed. No study provided all parameters identified as important by the Scientific Committee of the World Association of Laser Therapy. In neck pain, however, there is little reason to believe that factors other than a plausible anatomical target, dose per point, and irradiation times are essential for efficacy of class 3B lasers (5–500 mW). We had sufficient data relating to each of these components of therapy, when combined with manufacturers’ specifications, to identify a dose-response pattern for the number of joules per point and wavelength used and positive outcome. Subgrouping of studies by wavelength and ascending doses reduced apparent heterogeneity in treatment protocols and laser parameters, and showed a dose-response pattern with distinct wavelength-specific therapeutic windows. Most statistical heterogeneity disappeared when we excluded trials with small doses or flaws in treatment procedure from efficacy analyses. Additionally, a very high dose (54 J) of 830 nm LLLT used in one trial did not cause beneficial nor harmful effects. This finding suggests not only that doses of this magnitude are higher than the therapeutic window, but also that LLLT is safe even if such an overdose is delivered. Frequency of treatments varied from daily to twice a week, raising questions about optimum treatment frequency.

Our analysis suggests that the optimum mean dose per point for 820–830 nm was 5–9 J, with an irradiation time of 39-8 s, and for 904 nm, 2-2 J delivered with an irradiation time of 238 s. We recommend a multicentre, pragmatic trial in an appropriately powered study to test the effectiveness of parameters of this order, with both pain intensity and functional improvement as outcome measures.
Data from seven trials were available for up to 22 weeks after the end of treatment, suggesting that positive effects were maintained for up to 3 months after treatment ended. Trials of knee osteoarthritis, tendinopathies, and low back pain reported similar longlasting effects of LLLT. These results contrast with those for nonsteroidal anti-inflammatory drugs in arthritis and spinal disorders, for which the effect ends rapidly when drug use is discontinued. Reduction of chronic neck pain at the end of treatment of 19.86 mm and at follow-up of 23.44 mm on a visual analogue scale of 100 mm represents clinically significant pain relief. This result compares favourably with those of pharmacological therapies that are widely used in treatment of neck pain, for which investigators have shown no conclusive evidence of benefit. Intake of oral analgesics was not systematically reported; however, randomisation within trials would keep the confounding effect of this factor to a minimum.

Half the studies obtained data for side-effects, with tiredness reported in the laser-treated group in three studies, which was significant in one study. Since LLLT does not generate destructive heat, safety relates mainly to potential eye damage, dependent on class of laser device (classes 1–4), which is defined by analysis of several parameters. Safety glasses are required for classes 3B and 4 to eliminate this risk, and would be required for use in all studies. Systematic reporting of side-effects in future studies would also be recommended to clarify short-term and long-term safety aspects of LLLT.

Mechanisms for LLLT-mediated pain relief are not fully understood. Several investigations exploring the pleomorphic tissue effects of laser irradiation provide plausible explanations for the clinical effects of LLLT. Anti-inflammatory effects of red and infrared laser irradiation have been shown by reduction in specific inflammatory markers (prostaglandin E2, interleukin 1β, tumour necrosis factor α), in in-vitro and in-vivo animal studies and in man. In animal studies, the anti-inflammatory effects of LLLT are similar to those of pharmacological agents such as celecoxib, meloxicam, diclofenac, and dexamethasone. Chronic neck pain is often associated with osteoarthritis of zygopophyseal joints, which is manifested by pain, swelling, and restricted movement as clinical markers of local inflammation. Laser-mediated anti-inflammatory effects at this joint could result in decreased pain and increased mobility. The distance between skin surface and lateral aspect of the facet joint is typically 1–5–3.0 cm without pressure, and less with contact pressure (measured with ultrasonography [unpublished data, JMB]). Since 830 nm and 904 nm lasers penetrate to several centimetres, anti-inflammatory effects at zygopophyseal joints are a plausible mechanism of pain relief.

Another possible mechanism of LLLT action on muscle tissue is a newly discovered ability to reduce oxidative stress and skeletal muscle fatigue with doses similar to those delivering anti-inflammatory effects. This effect has been reported in an animal study and in human studies with biceps humeri contractions and different wavelengths. Because muscle fatigue is usually a precursor of muscle pain, and chronic trapezius myalgia is associated with increased electromyograph activity during contractions and impaired microcirculation, reduction of oxidative stress and muscular fatigue could be beneficial in patients with acute or chronic neck pain.

Inhibition of transmission at the neuromuscular junction could provide yet another mechanism for LLLT effects on myofascial pain and trigger points. Such effects could mediate the clinical finding that LLLT decreases tenderness in trigger points within 15 min of application. Laser-induced neural blockade is a further potential mechanism for the pain-relieving effects of LLLT. Selective inhibition of nerve conduction has been shown in Aδ and C fibres, which convey nociceptive stimulation. These inhibitory effects could be mediated by disruption to fast axonal flow in neurons or inhibition of neural enzymes.

These tissue effects of laser irradiation might account for the broad range of conditions that are amenable to LLLT treatment. Whether specific treatment protocols are necessary to elicit different biological mechanisms is unknown. Heterogeneity of treatment protocols might be due partly to variation in LLLT parameters and protocols, eliciting different effects. Whatever the mechanism of action, clinical benefits of LLLT occur both when LLLT is used as monotherapy and in the context of a regular exercise and stretching programme. In clinical settings, combination with an exercise programme is probably preferable. The results of LLLT in this review compare favourably with other widely used therapies, and especially with pharmacological interventions, for which evidence is sparse and side-effects are common.

Table 3: Mean dose per point and irradiation times for wavelengths of LLLT used in studies with statistically significant results

<table>
<thead>
<tr>
<th>Wavelength</th>
<th>Mean dose per point (J)</th>
<th>Mean irradiation time per point (s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>632 nm</td>
<td>2</td>
<td>200</td>
</tr>
<tr>
<td>780 nm</td>
<td>1</td>
<td>196</td>
</tr>
<tr>
<td>820–830 nm</td>
<td>5.9 (3.4)</td>
<td>39.8 (20.3)</td>
</tr>
<tr>
<td>904 nm</td>
<td>2.2 (1.6)</td>
<td>22.8 (18.4)</td>
</tr>
</tbody>
</table>

Data are mean (SD, when applicable). LLLT—low-level laser therapy.

Contributors

RTC participated in the literature search, development of inclusion and exclusion criteria, selection of trials for inclusion in the analysis, methodological assessment, data extraction and interpretation, and writing of the report. MIJ participated in data analysis and interpretation, critically reviewed the report with special expertise in pain management, and contributed to writing of the report. RABL-M participated in data interpretation and analysis, and critically reviewed the report with respect...
to the mechanism of action of laser, and relevance to neck pain. JMB participated in development of inclusion and exclusion criteria, translation of non-English language articles, methodological assessment, data analysis and interpretation, writing of the results section of the report, and supervised writing of the report as a whole.

Conflicts of interest
RTC is a member of the World Association for Laser Therapy [WALT], the Australian Medical Acupuncture College, the British Medical Acupuncture Society, the Australian Pain Society, the Australian Medical Association, and the Royal Australian College of General Practitioners. MII is a member of the International Association of the Study of Pain. RABI-M is funded by Fundação de Amparo do Estado de São Paulo (FAPESP, Brazil) and is scientific secretary of WALT, from which he has never received funding, grants, or fees. JMB is a member of the Norwegian Physiotherapy Association, Norwegian Sports Physiotherapy Society, Norwegian Society for Rheumatological and Orthopedic Physiotherapy, and has received research awards and grants from the Norwegian Manual Therapy Association, the Norwegian Neck and Back Congress, the Norwegian Research Council, the Norwegian Fund for Postgraduate Training in Physiotherapy, and the Grieg Foundation. He is also president of WALT, a position for which he has never received funding, grants, or fees.

References

Neck pain and low-level laser: does it work and how?

Neck pain is a very common symptom. Sometimes it can be brief and inconsequential, but for many people the pain can be severe and disabling. In The Lancet today, Roberta Chow and colleagues report a systematic review of randomised trials and conclude that laser radiation provides symptomatic relief of neck pain. This conclusion raises several pertinent questions. In view of our current understanding of the physiology of neck pain, how does laser radiation provide symptomatic relief? Should the findings prompt a reassessment of our understanding of this physiology? And, if substantiated, should the treatment be offered or covered by healthcare systems?

Basic research on the interaction between low-level laser and living tissues dates back more than 30 years, but has been published mainly in non-clinical journals. Chow and colleagues located 16 randomised trials that reported on 820 patients in total. They calculated an average pain reduction on a 100-mm visual analogue scale of about 20 mm immediately after laser therapy, and in at least one trial up to 22 weeks after treatment. An intervention able to decrease, on average, the level of pain by 20 mm is widely judged to be clinically important, particularly if the effect persists for weeks after treatment. 10 mm is usually regarded as the limit for clinically significant reduction in pain level in pain-related trials.

Laser therapy is a modality that can be viewed with scepticism by health-care providers, in part because seemingly unwarranted claims are sometimes made in the lay press and in advertising. The mechanism of action of this technique also remains undefined, but many drugs that are prescribed every day have unclear mechanisms of action. Chow and colleagues suggest that low-level laser treatment might work by anti-inflammatory effects on soft tissues; inflammation has not been noted in most patients with typical non-specific neck pain. In fact, the pathogenesis of so-called non-specific neck pain is poorly understood. The observation that low-level laser—applied to tender areas or acupuncture-like points—relieves neck pain should prompt new studies about the mechanisms of non-specific neck pain.

Pain is subjective, and outcomes such as effects on function, quality of life, or one’s ability to participate in occupational and leisure undertakings have not been addressed. Cost-benefit has also not been established, so some would argue low-level laser does not warrant funding by health-care systems. However, without a doubt, a relevant reduction in pain can greatly enhance quality of life, and health-care systems around the world do currently fund interventional treatments for neck pain with scarce evidence for their effectiveness and with small reductions in pain. Arguably, low-level laser treatment should be funded by health-care systems because it is effective with few side-effects.

The systematic review methods used by Chow and colleagues adhere to accepted methodological and reporting standards; no reason to mistrust the methods is obvious. Similar conclusions have been reached elsewhere. However, the number of trials in today’s report that were sponsored by the company manufacturing the laser devices is unclear, raising concerns of bias and partisanship. Yet funding for trials of rehabilitation interventions from non-commercial
partners is very scarce. The funnel plot in today’s report to assess for publication bias was reassuring in that it suggested no major bias on this topic.

Today’s findings on low-level laser therapy indicate that this non-invasive treatment provides pain relief in the short and medium term for people with neck pain. This evidence is more solid than that for many current interventions. Although mechanisms of action and effects on function and occupational outcomes are not clearly understood and warrant further impartial study, low-level laser therapy is an option worthy of consideration for management of non-specific neck pain.

Jaime Guzman
University of British Columbia, Vancouver, BC, Canada V6H 3X5
jaime@ohsah.bc.ca
I declare that I have no conflicts of interest.